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Abstract A boundary layer analysis is presented to study the heat transfer characteristics of a
laminar micropolar fluid boundary layer over a linearly stretching, continuous surface. The study
considers the effects of viscous dissipation and internal heat generation. Two cases are studied;
namely the surface with prescribed uniform surface temperature (PST-case) and the surface with
prescribed uniform wall heat flux (PHF-case). The solution for the governing momentum,
angular momentum and energy equations are obtained for various values of the material
parameters of the micropolar fluid.

1. Introduction

The laminar boundary layer of a viscous fluid over a moving continuous solid
surface is a significant type of flow occurring in several engineering
applications. Vajravelu and Rollins (1991) investigated the heat transfer
characteristics of a viscoelastic fluid over an impermeable, linearly stretching
sheet with power-law surface temperature or surface heat flux. The effects of
viscous dissipation and internal heat generation on the heat transfer in the
laminar boundary layer of a viscous fluid over a linearly stretching surface
with variable wall temperature subject to suction or blowing were considered
by Vajravelu and Hadjinicolaou (1993) and Vajravelu (1994).

Eringen (1966) has proposed the theory of micropolar fluids which takes
account the inertial characteristics of the substructure particles, which are
allowed to undergo rotation. The theory of thermomicropolar fluids has been
developed by Eringen (1972). The boundary layer flow of a micropolar fluid
over a semi-infinite plate was studied by Ahmadi (1976). Gorla et al. (1983)
studied the forced convection in a micropolar boundary layer flow on a vertical
plate.

In the present paper, we have presented an analysis to study the heat
transfer in a micropolar fluid over a stretching sheet in the presence of viscous
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dissipation and internal heat generation. Two cases are studied, namely, the Heat transfer in a
uniform surface temperature and uniform surface heat flux boundary micropolar fluid
conditions. The governing equations were solved numerically. The numerical

results are presented for a range of values of the material parameters, the heat

source/sink parameters and Eckert number.

2. Flow analysis 51
Consideration may be given to the problem of a flat porous surface issuing
from a very thin slit at x = 0, ¥y = 0 and subsequently being stretched, as in a
polymer extrusion process (see Figure 1). It is assumed that the speed of a point
on the surface is proportional to its distance from the slit. The boundary layer
equations for the steady, two-dimensional, incompressible viscous micropolar

flow may be written as:
Mass:
ou Ov
e 1
Momentum:
ou ou K 8?u KON
I e [y r, 27 2
u8x+08y (V+p)8y2+p8y (2)
Angular momentum:
ON ON ~&®N K ou
“ox Ty T hi o pj( +8y) 2

where # and v are the velocity components in the x and y direction, respectively,
N angular velocity, K, p, v, v and j are the vortex viscosity, the density, the
kinematic viscosity, the spin gradient viscosity and the microinertia per unit
mass.
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The appropriate boundary conditions are given by:
u=Bx, v=v,, N=0a y=0 (B>0),
u— 0, N -0 as y — oo.

Equations (1-3) admit a self-similar solution:

u=Bxf'(n), v=—VBuf(n)

N = Bx\/lgg(n) (5)
B
5

where 1) is the similarity space variable, f{(n)) and g(n) are the
Clearly # and v defined in equation (5) satisfy the continuity equation (1).
Substituting the transformations (5) in (2-4) we get:

(1 + A)f/// + Ag’ +ff// . (f/)Z -0 (6)

N —A-Bi(2g+f")~flg+gf=0 (7)
and the transformed boundary conditions are:
f(0) =1, f(0) = —vu/VBv = fu, g(0)=0
f(00) =0, g(c0)=0
In the above equations, a prime denotes differentiation with respect to n, and B;
= vliB, \ = v/pjv and A = K/pv. The case corresponding to f,, < 0 implies
blowing (v,, > 0) and f,, > 0 implies suction (v,, < 0). In the case of f,, = 0, the

stretching sheet is impermeable.
The wall shear stress is given by:

(®)

ou
Tw = (1 +K)8—y+KN]y:o

- pr\/é(l + A)F(0)

3. Heat transfer analysis
The boundary layer energy equation with viscous dissipation and internal heat
generation or absorption is:

or = oT, ,o&T Ou, o
pcp(ua—kva—y)—ka—ﬂ-i-(u-i-[{)(a—y) +Q(T_Too) (10)



where % is the thermal conductivity, C, is the specific heat, and @ is the Heat transfer in a

volumetric rate of heat generation.
3.1 Prescribed surface temperature (PST-case)
For this case, the boundary conditions are:
T=T,=constant at y=0,
T—T as y — oo,
00

Defining the dimensionless temperature by:

o0 = (71

micropolar fluid

(12)

and using the relations (5), the energy equation (10) and the boundary

conditions (11) become:
0" + oft + ool + (1 + A)oE(f")* =0,

=1 at n=0,
0—0 as n— oo

where:
o = pC,/k, the Prandtl number;
a = Q/BpC,, the heat source/sink parameter;
E = B*L?/CyA, the Eckert number;
L = characteristic length;
A=(Ty,—Ty)

3.2 Prescribed wall heat flux (PHF-case)
For this case, the boundary conditions are:

T
_k(%_y) =qu =constant at y =0,
T — Ty as y — oo.

Defining:
7D vV X2
T—Tw= z\/%@ o(n),

and substituting the relations (5) into (10) and (15), we get
¢ +of ¢ — o(2f' — a)p + (1+ A)oE(f")* =0,

(13)

(14)



HFF
11,1

54

Table 1.

Wall values of velocity
and microrotation
gradients

¢0)=-1,  ¢() =0, (18)

where:
o = pC,/k, the Prandtl number;
a = Q/BpC,, the heat source/sink parameter;
E = Eckert number.

4. Results and discussion

The governing boundary layer equations for the velocity, microrotation and
temperature have been solved on the digital computer using the Runge-Kutta
numerical integration procedure in conjunction with shooting techniques. In
the numerical solution, a check was made to confirm that smoothness
conditions at the edge of the boundary layer were satisfied. An integration step
size of An = 0.01 and a value of 7., the edge of the boundary layer, rangin%
from 8 to 12 was found to be adequate to satisfy a convergence criterion of 10~
at the boundary layer edge.

Tables I and II contain a summary of numerical results. Table I shows the
surface values of velocity gradient and the values of microrotation component.
The former is proportional to the friction factor whereas the latter to the wall
couple stress. Table II shows the surface values of temperature gradient for
PST-case and the surface values of temperature for PHF-case. Here, we have o
=0.72,B; =0.1, A\= 0.5 while A, «, f,, and E were varied over a range.

Figures 2 and 3 display several dimensionless velocity profiles f’(n) and
microrotation profiles g(n) versus space variable 7, for the prescribed surface
temperature (PST) case or prescribed wall heat flux (PHF) case, for several
values of the dimensionless parameter f,, and A when B; = 0.1, A = 0.5 and
o = 0.72. The results indicate that the boundary layer thickness of velocity and
angular velocity fields increases with increasing A and decreases with
increasing f,,. The microrotation component decreases monotonically to zero at
the boundary layer edge. The magnitude of the velocities is smaller for
micropolar fluids in comparison with Newtonian fluids. This may be explained
by the fact that due to the increased viscosity of micropolar fluids, the velocity
is reduced.

Figure 4 displays several dimensionless temperature profiles 6(n) versus
space variable 7, for the prescribed surface temperature (PST) case, for several
values of the dimensionless parameter f,,, o, £ and A when B; = 0.1, A = 05

fuw=-02 fu =00 fu =02
A -"(0) g0 "0 g0) ~-"(0) g0
0.0 0.90500 0 1.00001 0 1.10499 0
05 0.74987 0.03833 0.81391 0.04383 0.88344 0.04931
15 0.58238 0.08901 0.62136 010165 0.66304 011473
50 0.36334 017318 0.37988 0.19607 0.39729 0.22060




=002  fu=00 fu=02
A o E -0 (0) ¢(0) —0(0) ¢(0) -0(0) $(0)
0.0 01 00 107508 093016 113170 0.88363 119261  0.83849

0.01 1072904 093215 112919 0.88585  1.18969  0.84095

0.5 096805 1.02971  1.00606 099465 1.04617  0.96128

0.0 0.0 1.03306 096800  1.08862  0.91859  1.14889  0.87041
0.01 1.03088 097011 1.08606 092095 1.14591  0.87300

0.5 092380 1.07376 096046  1.03632  0.99967  1.00029

0.1 0.0 098586  1.01434 1.04021 096134 1.09995  0.90913
0.01 098362 1.01661 1.03759 096386  1.09690  0.91191

0.5 0.87381  1.12800  0.90893  1.08755  0.94737  1.04785

0.5 0.1 0.0 111470  0.89710  1.17800  0.84890  1.24556  0.80285
0.01 111305 0.89858  1.17610  0.85051  1.24339  0.80459

0.5 103253 097082  1.08326  0.92932 1.13698  0.89003

0.0 0.0 107706 092845 113993  0.87725 120731  0.82829
0.01 107538 093001  1.13800  0.87894  1.20510  0.83012

0.5 099319 1.00632 1.04328 096203 1.09664  0.91996

0.1 0.0 103659 096470  1.09901  0.90991  1.16627  0.85743
0.01 1.03488 096636  1.09703 091171 1.16401  0.85937

0.5 095072  1.04754  1.00014 099988  1.05318  0.95440

15 -0.1 0.0 115552  0.86541  1.22414  0.81690  1.29699  0.77102
0.01 112435 086642 122282  0.81798  1.29550  0.77217

0.5 1.09734 091576  1.15814 087081  1.22253  0.82843

0.0 0.0 112138 0.89176  1.18994  0.84038  1.26290  0.79183
0.01 112019  0.89282 118860  0.84151  1.23138  0.79303

0.5 106195 094475 112256  0.89700  1.18693  0.85199

0.1 0.0 1.08557 092117 115410 0.86648  1.22721  0.81485
0.01 108436 092229 115272  0.86767 1.22566  0.81612

0.5 1.02473 097722  1.08516 092621  1.14955  0.87814

5.0 -0.1 0.0 120616  0.82908 127630 0.78167 1.35651  0.73718
0.01 120553  0.82960 127859  0.78223  1.35572  0.73777

0.5 117435 0.85545 124379  0.80943 1.31707  0.76626

0.0 0.0 117535 0.85081  1.24865  0.80087  1.32612  0.72408
0.01 117470  0.85136 1.24792  0.80145 1.32531  0.75469

0.5 114277  0.87853 121228  0.82999  1.28575  0.78452

0.1 0.0 114354  0.87448 121701  0.82168  1.29478  0.77233
0.01 1.14287 087507  1.21627 082230 1.29396  0.77297

0.5 111010 090372 117971  0.85233  1.25340  0.80429
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Table II.

Wall values of surface
temperature gradient
(PST-case) and surface
temperature (PHF-case)

and o = 0.72. Comparing the curves we note that the temperature at a given
point (fixed 7)) decreases with an increase in the micropolar parameter A and
the same with suction/blowing parameter f,. This means that the thermal
boundary layer thickness decreases with increasing A and f,,. It is also seen
that the temperature increases with an increase in the heat source/sink
parameter «. The same trend occurs with an increase in the frictional heating
parameter (Eckert number) E.

The dimensionless wall temperature gradient, #'(0), as a function of the
micropolar parameter, A, for several sets of values of the dimensionless
parameters f,, and o when £ = 0.01 is shown graphically in Table II. The
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Figure 2.

Velocity profiles (PST or
PHF-case) for various
values of A and f,,

Figure 3.
Microrotation profiles
(PST or PHF-case) for
various values of A

and f,,
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magnitude of the wall temperature gradient increases with increasing values of
f,» and A. The opposite behavior is observed as « increases. Furthermore, the
negative values of the wall temperature gradient are indicative that the heat
flows from the surface to the ambient fluid.

The behavior of the wall temperature ¢(0) with changes in f,,, « and A when
E =0.01 is shown in Table II. The wall temperature decreases as A increases.
Furthermore, it is observed that for fixed A, the larger the suction/blowing
parameter f,, the smaller is the wall temperature. In addition, the wall
temperature increases as the heat source/sink parameter « increases. Finally, it
should be mentioned that for a Newtonian fluid (A = 0), the results of the
present study reduce to those of Vajravelu and Hadjinicolaou (1993).

The micropolar material parameter A is proportional to the spin gradient
viscosity of the fluid microstructure. Increasing it results in flow retardation,
which in turn decreases the rate of heat transfer convected away from the
heated wall. This is clearly seen from the present results. It may be observed
from the results that as A increases, the magnitude of friction factor and heat
transfer rate decrease whereas the gradient of microrotation increases. This
indicates that micropolar fluids display drag reduction and reduced heat
transfer rates.

5. Concluding remarks
In this paper, we have derived a set of boundary layer equations for the heat
transfer characteristics of the laminar boundary layer of a micropolar fluid over
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Figure 4.
Temperature profiles
(PST-case) for various
values of A, o and E
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a linearly stretching, continuous surface. Consideration is given to uniform
surface temperature and uniform surface heat flux boundary conditions subject
to suction or blowing in the presence of viscous dissipation and internal heat
generation. Numerical solutions are presented for the fluid flow and heat
transfer characteristics. The surface friction and heat transfer rate in the case of
micropolar fluids are observed to be less than the case of Newtonian fluids.
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